2021年高三一模数学试题答案

一、选择题: DBCA CBCD

二、选择题: ABD BC AB ACD

三、填空题: 13. 3.5 14. 12 15. 1; e^3 - e 16. $\frac{1}{2}$

四、解答题:

$$\{a_n-2\}$$
 _{是以} $a_1-2=-\frac{7}{4}$ 为首项,以 $\frac{3}{2}$ 为公比的等比数列

所以数列 $\{a_n-2\}$ 是等比数列......4分

所以
$$b_n = 2^{n+3}$$
 - 14? 3^{n-1} 6 分

因为
$$b_{n+1}$$
- b_n = - 14 2^n 2^{n+4} + 14 2^{n-1} 2^{n+3}

所以 $b_{n+1} < b_n$ 所以 $\{b_n\}$ 单调递减,………9分

所以 b_n 的最大值为 $b_1 = 2$10分

18. 解: (1) 法 1: 根据题意,

所以
$$A = \frac{\pi}{3}$$
6 分

法 2: 根据题意,
$$2\sin B + b\cos A = b$$
 , 得 $\frac{2\sin B}{b} + \cos A = 1$ ………… 2 分

由正弦定理可得
$$\frac{2\sin A}{a} + \cos A = 1$$
 ,即 $\frac{2\sin A}{2\sqrt{3}} + \cos A = 1$

得:
$$\sin A + \sqrt{3}\cos A = \sqrt{3}$$
,4 分

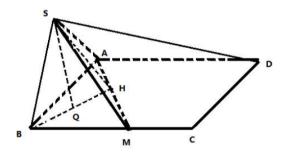
角 A 为三角形内角,
$$\therefore A + \frac{\pi}{3} = \frac{2\pi}{3}$$

$$A = \frac{\pi}{3}$$
......6 分

由余弦定理可得: $a^2=b^2+c^2-bc$,解得: b=2, c=4,......10 分

所以,
$$S_{\triangle ABC} = \frac{1}{2}bc\sin A = 2\sqrt{3}$$
 ……………………12 分

19.解: (1) 法 1:



取 AM 中点为 H, 连结 HS, HB,

因为 $\angle ABM = \frac{\pi}{2}$ 且 AB=BM=1,所以 $\Box ABM$ 为等腰直角三角形,同理 $\Box ASM$ 也为等腰直角三

角形,HS,HB均垂直AM于H,所以AM 上平面BSH,

所以二面角S-AM-B的平面角为 $\angle BHS=\frac{\pi}{3}$,2分

因为 $SH=BH=\frac{\sqrt{2}}{2}$,所以三角形 SHB 为正三角形,

因为AM \bot 平面BSH,所以AM 垂直于SQ, 又 $SQ \bot BH$,

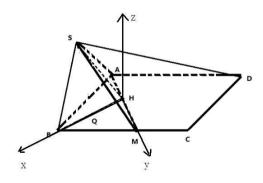
所以 SQ 垂直于底面 ABCD,

连结 AQ, $\angle SAQ$ 为 AS 与平面 ABCD 所成角......5 分

因为 AS=1,
$$\sin \angle SAQ = \frac{SQ}{AS} = \frac{\sqrt{6}}{4}$$

所以 AS 与平面 ABCD 所成角的正弦值为 $\frac{\sqrt{6}}{4}$6 分

法 2: 取 AM 中点为 H ,连接 SH ,因为 \square AMS 和 \square AMB 均为等腰直角三角形,所以 SH ,BH 均垂直于 AM ,所以 AM \bot 平面 BSH ………………1 分



以 H 为坐标原点, HB, HM 分别为 x 轴, y 轴建系如图:则点 S 在坐标平面 xOz 内,设其坐标为 S(a,0,c), (a>0,c>0) 由 $\Box AMS$ 为等腰直角三角形且 AS=1,

设平面 ASM 的法向量为 $\vec{m} = (x, y, z)$,

取设平面 ABM 的法向量为 $\vec{n} = (0,0,1)$,

因为二面角 B-AM-S 的大小为 $\frac{\pi}{3}$,

所以
$$\cos \langle \vec{m}, \vec{n} \rangle = \frac{a}{\sqrt{a^2 + c^2}} = \frac{1}{2}$$
 ② ……………4 分

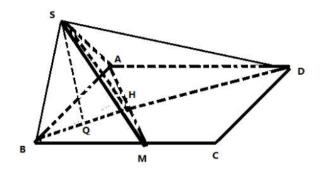
所以
$$\overline{AS} = (\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{4})$$

设AS与平面ABCD所成的角 θ 的正弦值为

$$\sin \theta = |\cos \langle \overrightarrow{AS}, \overrightarrow{n} \rangle| = \frac{\frac{\sqrt{6}}{4}}{1 \times \sqrt{(\frac{\sqrt{2}}{4})^2 + (\frac{\sqrt{2}}{2})^2 + (\frac{\sqrt{6}}{4})^2}} = \frac{\sqrt{6}}{4}$$

所以 AS 与平面 ABCD 所成角的正弦值为 $\frac{\sqrt{6}}{4}$6 分

(2)



法 1: 在平面 SAM 内作 $SH \perp AM$ 连结 BH, DH, DH $BH \perp AM$,

又因为*SD ⊥ AM* , ∴ *AM* ⊥平面SHD7 分

所以 $AM \perp DH$,又因为 $AM \perp BH$. AM , BH , DH 都在平面 ABCD 内

所以 B, H, D 三点共线.9 分

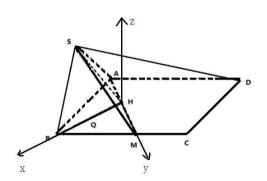
 $AM \perp BD$

因为矩形 ABCD 中,BC=2AB=2

所以 MC=BC-BM= $\frac{3}{2}$12 分

法 2:

作 $BH \perp AM$ 于 H,则 $SH \perp AM$ 所以 $AM \perp$ 平面 BSH7 分



以H为坐标原点,HB,HM分别为x轴,y轴建系如图:则点S在坐标平面xOz内,

设其坐标为S(a,0,c),设D(x,y,0),则 $\overline{DS} = (a-x,-y,c)$

取 AM 的方向向量为 $\vec{p} = (0,1,0)$

因为 $SD \perp AM$ 所以 $\overrightarrow{DSDp} = -y = 0$,得y = 0,

即D在x轴上, 所以B,H,D三点共线

......9 分

以下解法同法一.

20. 解:(I) 由题意知收入提高的有 260 户,未种植 A 作物的有 100 户,得 2×2 列联表

	种植 A 作物的数量	未种植 A 作物的数量	合计
收入提高的数量	180	80	260
收入未提高的数量	20	20	40
合计	200	100	300

.....2 分

经计算得
$$K^2 = \frac{300 \times (180 \times 20 - 80 \times 20)^2}{200 \times 100 \times 260 \times 40} = \frac{75}{13} \times 5.769 \times 5.024$$

所以有 97.5% 的把握认为收入提高与种植 A 作物有关.4 分

(2) 设 A_i, B_i, C_i 表示第 i 次种植作物 A,B,C 的事件,其中 i=1,2,3,由己知条件得:

因为第一次必种植 A,则随机变量 X 的取值为 1,2.....6 分

$$P(X = 1) = P(C_2B_3) + P(B_2C_3) = P(B_3 \mid C_2) \square P(C_2) + P(C_3 \mid B_2) \square P(B_2)$$

$$= \frac{3}{5} \times \frac{2}{3} + \frac{3}{4} \times \frac{1}{3} = \frac{13}{20}$$
......8 \(\frac{1}{2}\)

$$P(X = 2) = P(C_2A_3) + P(B_2A_3) = P(A_3 \mid C_2) \square P(C_2) + P(A_3 \mid B_2) \square P(B_2)$$

$$= \frac{2}{5} \times \frac{2}{3} + \frac{1}{4} \times \frac{1}{3} = \frac{7}{20}$$
.....10 \(\frac{1}{2}\)

所以X的分布列为

Х	1	2
Р	13	7
	$\overline{20}$	$\overline{20}$

.....11 分

21. \mathbf{m} : (1) 因为曲线 E_2 : $y^2 = 4x$ 的焦点恰好也是 F_2 , 所以椭圆中 c=1, 2c=2......1 分

因为 $\square MNF$,的面积为 3,所以|MN|=3

(2) 因为 O 为 F_1 , F_2 的中点,所以 O 到 l 的距离为 F_1 到 l 距离的一半,

又因为 $\Box ABF_1$ 与 $\Box OCD$ 的面积相等,所以|CD|= 2|AB|,5分

$$:: F_2(1,0)$$
 . 设 l 的方程为 $y = k(x-1)$, $A(x_1,y_1), B(x_2,y_2), C(x_3,y_3), D(x_4,y_4)$ 则:

得:
$$x_1 + x_2 = \frac{8k^2}{3+4k^2}$$
, 由两点间距离公式可得 $|AB| = \sqrt{1+k^2} |x_1 - x_2|$ $x_1x_2 = \frac{4k^2 - 12}{3+4k^2}$

所以|
$$AB \models \sqrt{1+k^2}\sqrt{(x_1+x_2)^2-4x_1x_2} = 4-\frac{4k^2}{3+4k^2}$$
;8分

得:
$$x_3 + x_4 = 2 + \frac{4}{k^2}$$
,所以 $CD \models x_3 + x_4 + 2 = 4 + \frac{4}{k^2}$;10 分

22. 解: (1)当
$$a = -1$$
时, $f(x) = -x + \ln x + 1$,定义域为 $(0, +\infty)$,

令
$$f'(x) > 0$$
, 得 $0 < x < 1$; 令 $f'(x) < 0$, 得 $x > 1$.

(2)
$$\Leftrightarrow$$
 $g(x) = f(x) - f'(x) = ax + \ln x + 1 - a - \frac{1}{x}, (x > 0)$

$$g'(x) = a + \frac{1}{x} + \frac{1}{x^2} = \frac{ax^2 + x + 1}{x^2}$$
4

若
$$a \ge 0$$
,存在 $g(e) = a(e-1) + (2-\frac{1}{e}) > 0$, 与 $g(x) = f(x) - f'(x) \le 0$ 恒成立矛盾,

$$ax^2+x+1=0$$
 (*),方程的 $\Delta>0, x_1\Box x_2=\frac{1}{a}<0$,所以方程必有一正根记 x_2

所以函数 g(x) 在 $(0,x_2)$ 单调递增,在 $(x_2,+\infty)$ 单调递减,

若满足条件必有
$$g(x)_{max} = g(x_2) \le 0$$
, 注意到 $g(1) = 0$ 6 分

(3) 因为
$$F(x) = \ln x$$
, 设两切点为 $A(t, \ln t)$, $B(\frac{1}{t}, -\ln t)$,

不妨设
$$A$$
 在 B 的右边,则 $t > 1$ 因为
$$F'(x) = \frac{1}{x}$$
8 分

所以 A , B 两点处的切线方程分别为 $y = \frac{1}{t}x + \ln t - 1$, $y = tx - \ln t - 1$,

$$\diamondsuit \frac{1}{t}x + \ln t - 1 = tx - \ln t - 1, \quad \text{if } R = \frac{2t}{t^2 - 1} \ln t, \quad y_0 = \frac{\left(t^2 + 1\right) \ln t}{t^2 - 1} - 1 \dots 10$$

因为t > 1,所以 $x_0 = \frac{2t}{t^2 - 1} \ln t > 0$,

要证明
$$y_0 = \frac{(t^2+1)\ln t}{t^2-1} - 1 > 0$$

即证明
$$\frac{(t^2+1)\ln t}{t^2-1} > 1$$
 , 因为 $t^2 > 1$ 即证 $\ln t > \frac{t^2-1}{t^2+1}$

设
$$h(t) = \ln t - \frac{t^2 - 1}{t^2 + 1}(t > 1)$$
,则 $h'(t) = \frac{(t^2 - 1)^2}{t(t^2 + 1)^2} > 0(t > 1)$,

所以
$$h(t)$$
在 $(1,+\infty)$ 上是增函数,所以 $h(t)>h(1)=0$,则 $\ln t>\frac{t^2-1}{t^2+1}$,11分

所以
$$y_0 = \frac{(t^2+1)\ln t}{t^2-1} - 1 > 0$$
,

故点 P 一定落在第一象限......12 分